Understanding and Teaching Ratios and Proportional Relationships

Sybilla Beckmann

Department of Mathematics University of Georgia

The University of Georgia

Goals for the presentation today on ratio and proportional relationships

An opportunity to think together about:

- Motivating the concept of ratio and using ratio language;
- Reasoning about ratio tables, double number lines, and strip diagrams to solve problems and develop understanding of proportional relationships;
- Distinguishing ratios from fractions but connecting ratios to fractions via unit rates;
- Using unit rates to solve problems;
- Examine graphs and equations for proportional relationships.

The University of Georgia

→ ∃ → < ∃ →</p>

Developing Effective Fractions Instruction for Kindergarten Through 8th Grade

Recommendation 4:

"Develop students' conceptual understanding of strategies for solving ratio, rate, and proportion problems before exposing them to cross-multiplication as a procedure to use to solve such problems."

The University of Georg

Ratios and Proportional Relationships, Grades 6, 7

6.RP.3

Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

The University of Georg

→ ∃ → < ∃ →</p>

What happens when we mix 2 cups blue paint with 3 cups yellow paint?

That was 1 batch. What if we make more batches?

# of batches	1	2	3	4	5	6	7
# cups blue paint	2	4	6	8	10	12	14
# cups yellow paint	3	6	9	12	15	18	21
# cups green paint produced	5	10	15	20	25	30	35

What do these paint mixtures have in common? Same shade of green. For every 2 cups blue, there are 3 cups yellow

Image: Image:

What happens when we mix 2 cups blue paint with 3 cups yellow paint?

That was 1 batch. What if we make more batches?

# of batches	1	2	3	4	5	6	7
# cups blue paint	2	4	6	8	10	12	14
# cups yellow paint	3	6	9	12	15	18	21
# cups green paint produced	5	10	15	20	25	30	35

What do these paint mixtures have in common? Same shade of green. For every 2 cups blue, there are 3 cups yellow.

Image: Image:

6.RP.1

Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."

The University of Georgi

A B b 4 B b

Blue and yellow paint are mixed in the ratio 2 cups : 3 cups. This means: **for every** 2 cups blue paint present, there are 3 cups yellow paint present.

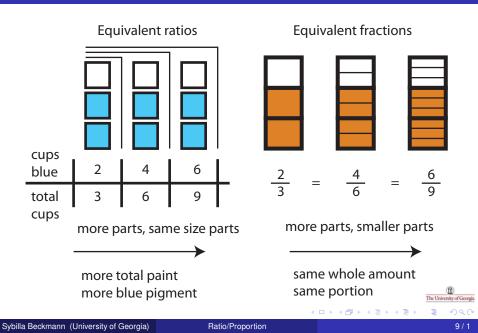
In each mixture, blue and yellow paint are in a ratio of 2 to 3:

# of batches	1	2	3	4	5	6	7
# cups blue paint	2	4	6	8	10	12	14
# cups yellow paint	3	6	9	12	15	18	21
# cups green paint produced	5	10	15	20	25	30	35

The University of Georg

3 > 4 3

Blue and yellow paint are mixed in a ratio of 2 to 3 to make Green Goblin paint.


How many cups of blue paint and how many cups of yellow paint will you need to make 30 cups of Green Goblin paint?

# of batches	1	2	3	4	5	6	7
# cups blue paint	2	4	6	8	10	12	14
# cups yellow paint	3	6	9	12	15	18	21
# cups green paint produced	5	10	15	20	25	30	35

The University of Georgi

(3)

How are ratios and fractions different?

Abby's orange paint is made by mixing red and yellow paint in the ratio 1 cup : 3 cups.

- Zack's orange paint is made by mixing red and yellow paint in the ratio 3 cups : 5 cups.
- Are the two shades of orange the same? Why or why not?

What's a common student misconception?

Students sometimes think the paints are the same shade because each mixture has 2 more cups yellow than red or because you get Zack's paint by adding 2 cups red, 2 cups yellow to Abby's.

The University of Georg

A B b A B b

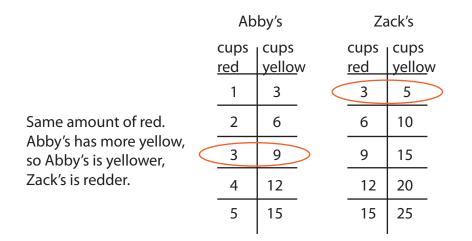
Abby's orange paint is made by mixing red and yellow paint in the ratio 1 cup : 3 cups.

- Zack's orange paint is made by mixing red and yellow paint in the ratio 3 cups : 5 cups.
- Are the two shades of orange the same? Why or why not?

What's a common student misconception?

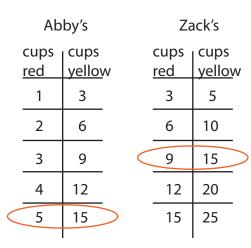
Students sometimes think the paints are the same shade because each mixture has 2 more cups yellow than red or because you get Zack's paint by adding 2 cups red, 2 cups yellow to Abby's.

The University of Georg


Abby's orange paint is made by mixing 1 cup red paint with 3 cups yellow paint.

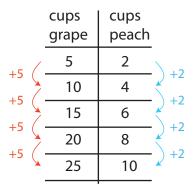
Zack's orange paint is made by mixing 3 cups red paint with 5 cups yellow paint.

- Make a ratio table for Abby's paint. Why do all the mixtures in the table have the same shade of orange?
- Make a ratio table for Zack's paint. Why do all the mixtures in the table have the same shade of orange?
- Look for common entries to compare the two mixtures.


The University of Georg

Using ratio tables to compare mixtures

The University of Georgia


Using ratio tables to compare mixtures

Same amount of yellow. Zack's has more red. So Zack's is redder, Abby's is yellower.

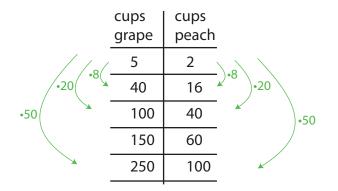
(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

5 cups grape juice for every 2 cups peach juice

Can you see another structure?

5 cups grape juice for every 2 cups peach juice. How can we find the unknown entries?

cups
peach
2
16
100


Sybilla Beckmann (University of Georgia)

The University of Georgia

3 1 4 3

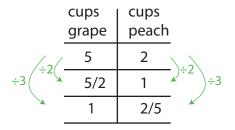
Image: Image:

5 cups grape juice for every 2 cups peach juice.

The University of Georgia

3 1 4 3

< A


5 cups grape juice for every 2 cups peach juice.

cups	cups
grape	peach
5	2
	1
1	

The University of Georgia

イロト イ理ト イヨト イヨト

5 cups grape juice for every 2 cups peach juice.

Unit rates:

5/2 cups grape juice for every **1** cup peach juice; 2/5 cups peach juice for every **1** cup grape juice.

The University of Georgia

글 🕨 🖌 글

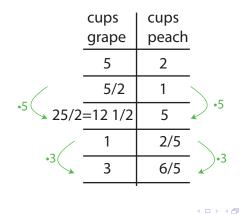
Reasoning with unit rates

5 cups grape juice for every 2 cups peach juice.

- How much grape juice should you use for 5 cups peach juice?
- I how much peach juice should you use for 3 cups grape juice?

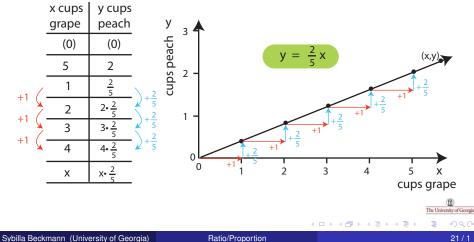
cups	cups
grape	peach
5	2
5/2	1
	5
1	2/5
3	

Sybilla Beckmann (University of Georgia)

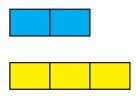

The University of Georgia

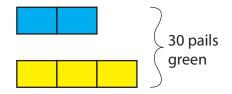
.

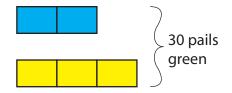
Reasoning with unit rates

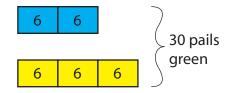

5 cups grape juice for every 2 cups peach juice.

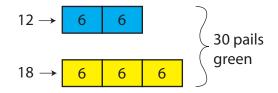
- How much grape juice should you use for 5 cups peach juice?
- I How much peach juice should you use for 3 cups grape juice?



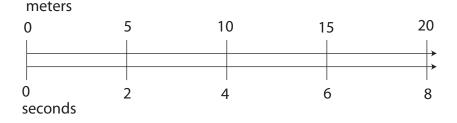

Showing a proportional relationship in a table, graph, equation


For every 5 cups grape juice, mix in 2 cups peach juice


Ratio/Proportion



5 equal parts make 30 pails



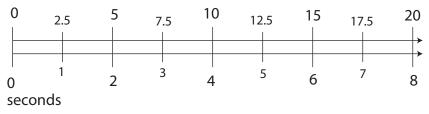
5 equal parts make 30 pails

5 equal parts make 30 pails

Asha runs 5 meters every 2 seconds.

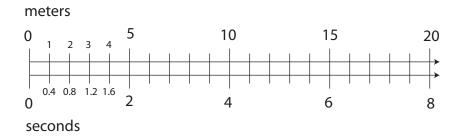
Give some problems you can solve using this double number line.

How can you use the double number line to help you solve these problems:

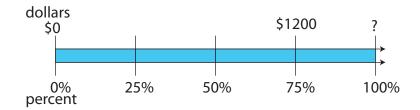

How far does Asha run after 3 seconds? After 5 seconds?

The University of Georgia

Asha runs 5 meters every 2 seconds.


meters

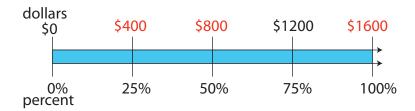
Make a new double number line and mark it to help you solve these problems:


How long does it take Asha to run 3 meters? 1 meter?

Asha runs 5 meters every 2 seconds.

The University of Georgia

If 75% of the budget is \$1200, then what is the full budget?



The University of Georgia

3 1 4 3

< 47 ▶

If 75% of the budget is \$1200, then what is the full budget?

The University of Georgia

3 1 4 3

Questions? Comments?

Why are the following two problems not solved the same way?

Problem 1: After a 20% discount, a bike costs \$160. How much did the bike cost before?

Problem 2: A bike costs \$160 now, but its price will go up by 20%. What will it cost then?

The University of Georgi

< 同 ト < 三 ト < 三 ト