Understanding and Teaching Ratios and Proportional Relationships

Sybilla Beckmann

Department of Mathematics
University of Georgia

Goals for the presentation today on ratio and proportional relationships

An opportunity to think together about:

- Motivating the concept of ratio and using ratio language;
- Reasoning about ratio tables, double number lines, and strip diagrams to solve problems and develop understanding of proportional relationships;
- Distinguishing ratios from fractions but connecting ratios to fractions via unit rates;
- Using unit rates to solve problems;
- Examine graphs and equations for proportional relationships.

IES Practice Guide on Fractions

Developing Effective Fractions Instruction for Kindergarten Through 8th Grade

Recommendation 4:
"Develop students' conceptual understanding of strategies for solving ratio, rate, and proportion problems before exposing them to cross-multiplication as a procedure to use to solve such problems."

Common Core State Standards

Ratios and Proportional Relationships, Grades 6, 7
6.RP. 3

Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

Motivating the concept of ratio

What happens when we mix 2 cups blue paint with 3 cups yellow paint?

That was 1 batch. What if we make more batches?

\# of batches	1	2	3	4	5	6	7
\# cups blue paint	2	4	6	8	10	12	14
\# cups yellow paint	3	6	9	12	15	18	21
\# cups green paint produced	5	10	15	20	25	30	35

What do these paint mixtures have in common?

Motivating the concept of ratio

What happens when we mix 2 cups blue paint with 3 cups yellow paint?

That was 1 batch. What if we make more batches?

\# of batches	1	2	3	4	5	6	7
\# cups blue paint	2	4	6	8	10	12	14
\# cups yellow paint	3	6	9	12	15	18	21
\# cups green paint produced	5	10	15	20	25	30	35

What do these paint mixtures have in common? Same shade of green. For every 2 cups blue, there are 3 cups yellow.

CCSS Ratios and Proportional Relationships

6.RP. 1

Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was $2: 1$, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."

A ratio table

Blue and yellow paint are mixed in the ratio 2 cups : 3 cups. This means: for every 2 cups blue paint present, there are 3 cups yellow paint present.

In each mixture, blue and yellow paint are in a ratio of 2 to 3 :

\# of batches	1	2	3	4	5	6	7
\# cups blue paint	2	4	6	8	10	12	14
\# cups yellow paint	3	6	9	12	15	18	21
\# cups green paint produced	5	10	15	20	25	30	35

Reasoning about ratio tables to solve problems

Blue and yellow paint are mixed in a ratio of 2 to 3 to make Green Goblin paint. How many cups of blue paint and how many cups of yellow paint will you need to make 30 cups of Green Goblin paint?

\# of batches	1	2	3	4	5	6	7
\# cups blue paint	2	4	6	8	10	$\mathbf{1 2}$	14
\# cups yellow paint	3	6	9	12	15	$\mathbf{1 8}$	21
\# cups green paint produced	5	10	15	20	25	$\mathbf{3 0}$	35

How are ratios and fractions different?

Equivalent ratios

more parts, same size parts

more total paint more blue pigment

Equivalent fractions

more parts, smaller parts

same whole amount
same portion

Comparing mixtures

Abby's orange paint is made by mixing red and yellow paint in the ratio 1 cup : 3 cups.
Zack's orange paint is made by mixing red and yellow paint in the ratio 3 cups: 5 cups.
Are the two shades of orange the same? Why or why not?
What's a common student misconception?
Students sometimes think the paints are the same shade because each mixture has 2 more cups yellow than red or because you get Zack's paint by adding 2 cups red, 2 cups yellow to Abby's.

Comparing mixtures

Abby's orange paint is made by mixing red and yellow paint in the ratio 1 cup : 3 cups.
Zack's orange paint is made by mixing red and yellow paint in the ratio 3 cups: 5 cups.
Are the two shades of orange the same? Why or why not?
What's a common student misconception?
Students sometimes think the paints are the same shade because each mixture has 2 more cups yellow than red or because you get Zack's paint by adding 2 cups red, 2 cups yellow to Abby's.

Using ratio tables to compare mixtures

Abby's orange paint is made by mixing 1 cup red paint with 3 cups yellow paint.
Zack's orange paint is made by mixing 3 cups red paint with 5 cups yellow paint.
(1) Make a ratio table for Abby's paint. Why do all the mixtures in the table have the same shade of orange?
(2) Make a ratio table for Zack's paint. Why do all the mixtures in the table have the same shade of orange?
(3) Look for common entries to compare the two mixtures.

Using ratio tables to compare mixtures

Same amount of red. Abby's has more yellow, so Abby's is yellower, Zack's is redder.

Abby's

Zack's

cups red	cups yellow
3	5
6	10
9	15
12	20
15	25

Using ratio tables to compare mixtures

Abby's	
cups red	cups yellow
1	3
2	6
3	9
4	12
5	15

Zack's	
cups	
red	

yellow\end{array}\right)\)

Same amount of yellow. Zack's has more red. So Zack's is redder, Abby's is yellower.

Additive structure in a ratio table

5 cups grape juice for every 2 cups peach juice

Can you see another structure?

Find unknown entries in a ratio table

5 cups grape juice for every 2 cups peach juice. How can we find the unknown entries?

cups grape	cups peach
5	2
	16
100	
150	
	100

Multiplicative structure in a ratio table

5 cups grape juice for every 2 cups peach juice.

Unit rates

5 cups grape juice for every 2 cups peach juice.

Unit rates

5 cups grape juice for every 2 cups peach juice.

Unit rates:

5/2 cups grape juice for every 1 cup peach juice; 2/5 cups peach juice for every 1 cup grape juice.

Reasoning with unit rates

5 cups grape juice for every 2 cups peach juice.
(1) How much grape juice should you use for 5 cups peach juice?
(2) How much peach juice should you use for 3 cups grape juice?

cups grape	cups peach
5	2
$5 / 2$	1
	5
1	$2 / 5$
3	

Reasoning with unit rates

5 cups grape juice for every 2 cups peach juice.
(1) How much grape juice should you use for 5 cups peach juice?
(2) How much peach juice should you use for 3 cups grape juice?

三

Showing a proportional relationship in a table, graph, equation

For every 5 cups grape juice, mix in 2 cups peach juice

Reasoning with strip diagrams

Blue and yellow paint are mixed in a ratio of 2 to 3 to make green paint. How many pails of blue paint and how many pails of yellow paint will you need to make 30 pails of green paint?

Reasoning with strip diagrams

Blue and yellow paint are mixed in a ratio of 2 to 3 to make green paint. How many pails of blue paint and how many pails of yellow paint will you need to make 30 pails of green paint?

Reasoning with strip diagrams

Blue and yellow paint are mixed in a ratio of 2 to 3 to make green paint. How many pails of blue paint and how many pails of yellow paint will you need to make 30 pails of green paint?

30 pails

5 equal parts make 30 pails

Reasoning with strip diagrams

Blue and yellow paint are mixed in a ratio of 2 to 3 to make green paint. How many pails of blue paint and how many pails of yellow paint will you need to make 30 pails of green paint?

5 equal parts make 30 pails

Reasoning with strip diagrams

Blue and yellow paint are mixed in a ratio of 2 to 3 to make green paint. How many pails of blue paint and how many pails of yellow paint will you need to make 30 pails of green paint?

5 equal parts make 30 pails

Reasoning with double number lines

Asha runs 5 meters every 2 seconds.

meters

Give some problems you can solve using this double number line.
How can you use the double number line to help you solve these problems: How far does Asha run after 3 seconds? After 5 seconds?

Reasoning with double number lines

Asha runs 5 meters every 2 seconds. meters

0	2.5	5	7.5	10	12.5	15	17.5	20		

seconds

Make a new double number line and mark it to help you solve these problems:
How long does it take Asha to run 3 meters? 1 meter?

Reasoning with double number lines

Asha runs 5 meters every 2 seconds.

meters

seconds

Reasoning about percent with double number lines

If 75% of the budget is $\$ 1200$, then what is the full budget?

Reasoning about percent with double number lines

If 75% of the budget is $\$ 1200$, then what is the full budget?

Thank you!

Questions? Comments?

Why are the following two problems not solved the same way?
Problem 1: After a 20\% discount, a bike costs $\$ 160$. How much did the bike cost before?
Problem 2: A bike costs $\$ 160$ now, but its price will go up by 20%. What will it cost then?

